Integral Calculus

What is integral calculus?

In differential calculus we differentiate a function to
obtain another function called derivative. Integral calculus is concerned with the opposite process.

Reversing the process of differentiation and finding the original function from the derivative is called integration or anti-differentiation.

The Indefinite Integral

If $\mathrm{F}(x)$ is a function of x and its derivative,

$$
\frac{d[F(x)]}{d x}=F^{\prime}(x)=f(x)
$$

then $\mathrm{F}(x)$ is called an indefinite integral or simply an integral of $f(x)$. Symbolically this is written as,

$$
\int f(x) d x=F(x)+c
$$

- The symbol \int is the integral sign, $f(x)$ is integrand (29)
- Constant c may have different values and accordingly we can have different members of $f(x) d x$ family.

For example, if $y=x^{4}$, the derivative of y is $\frac{d y}{d x}=4 x^{3}$
-When $\frac{d y}{d x}=4 x^{3}$ is given, to find y we have to follow the opposite process of differentiation. Thus, $\int 4 x^{3} d x=x^{4}$

However, $\frac{d y}{d x}=4 x^{3}$ may be the derivative of different differentiable functions of y.

For example it is equivalent to the derivatives of

$$
y=x^{4}+1, y=x^{4}-5, y=x^{4}+a \text { etc. }
$$

- Thus, if we add a constant (c) to the integral it will match with the differential function.

$$
\therefore \quad \int 4 x^{3} d x=x^{4}+c
$$

Rules for Indefinite Integration

Rule 1: the Power Rule

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad ; \mathrm{n} \neq-1
$$

$$
\text { eg. } \quad \int x^{5} d x=\frac{1}{6} x^{6}+c
$$

Rule 2. the Integral of a Multiple
$\int k f(x) d x=k \int f(x) d x$
; k is a constant
eg. $\int 2 x^{3} d x=2 \int x^{3} d x=\frac{1}{2} x^{4}+c$
Rule 3.the Integral of a Sum or Difference
$\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x$
$\int\left(2 x^{2}-5 x+3\right) d x=2 \int x^{2} d x-5 \int x d x+3 \int d x$

$$
=\frac{2}{3} x^{3}-\frac{5}{2} x^{2}+3 x+c
$$

Rule 4. Generalized Power Function Rule

$$
\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{(n+1) a}+c
$$

$$
\text { eg. i. } \int(4 x+2)^{1 / 2} d x=\frac{(4 x+2)^{3 / 2}}{\frac{3}{2} \times 4}=\frac{1}{6}(4 x+2)^{3 / 2}+c
$$

$$
\text { eg. ii. } \int\left(x^{3}+1\right)^{2} d x=\frac{\left(x^{3}+1\right)^{3}}{3 \times 3 x^{2}}+c=\frac{1}{9 x^{2}}\left(x^{3}+1\right)^{3}+c
$$

Rule 5. the Logarithmic Rule

$$
\int \frac{1}{x} d x=\ln |x| \quad x \neq 0
$$

i. $\quad \int \frac{3}{x} d x=3 \int \frac{1}{x} d x=3 \ln |x|+c$
ii. $\quad \int \frac{3}{2 x-1} d x=3 \int \frac{1}{2 x-1} d x=\frac{3}{2} \ln |2 x-1|+\mathrm{c}$

Rule 5. If $f(x)$ is a function of x and its differential coefficient with respect to x is $f^{\prime}(x)$. The derivative of $\ln [\pm f(x)]$ is

$$
\frac{d \ln [\pm f(x)]}{d x}=\frac{f^{\prime}(x)}{f(x)}
$$

$$
\therefore \quad \int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|
$$

eg. i. $\int \frac{2 x}{x^{2}+1} d x=\ln \left|x^{2}+1\right|$
eg. ii. $\int \frac{x^{2}}{x^{3}+1} d x$
The derivative of the denominator is $3 x^{2}$, and to apply the above rule the numerator should be multiplied by 3 as such denominator, too.

$$
\begin{aligned}
\int \frac{3 x^{2}}{\left(x^{3}+1\right) 3} d x & =\frac{1}{3} \int \frac{3 x^{2}}{x^{3}+1} d x \\
& =\frac{1}{3} \ln \left|\mathrm{x}^{3}+1\right|+\mathrm{c}
\end{aligned}
$$

Rule 6: the Exponential Rule
i. $\quad \int e^{x} d x=e^{x}+c$
eg. i. $\int\left(e^{4 x}-3 x^{2}+2 e\right) d x=\int e^{4 x} d x-3 \int x^{2} d x+2 e \int d x$

$$
=\frac{1}{4} e^{4 x}-x^{3}+2 e x+c
$$

$$
\text { ii. } \int e^{f(x)} d x=\frac{e^{f(x)}}{f^{\prime}(x)}+c
$$

eg. i. $\int e^{4 x+3} d x=\frac{1}{4} e^{4 x+3}+c$
iii. When $y=e^{f(x)}, \frac{d\left[e^{f(x)}\right]}{d x}=e^{f(x)} f^{\prime}(x)$

$$
\therefore \quad \int e^{f(x)} f^{\prime}(x) d x=e^{f(x)}+c
$$

eg. i. Find indefinite integral of $\int x e^{x^{2}} d x$

$$
f(x)=x^{2} \text { and } f^{\prime}(x)=2 x
$$

To apply the above rule we have to adjust the original function as,
$\frac{1}{2} \int 2 x e^{x^{2}} d x$ There is not a fundamental difference between the original function and this function.

We can apply the above rule for this function

$$
\int x e^{x^{2}} d x=\frac{1}{2} \int 2 x e^{x^{2}} d x=e^{x^{2}}+c
$$

Rule 8: the Substitution rule

$$
\int 2 x\left(x^{2}+1\right) d x
$$

Let $u=x^{2}+1$; then $d u / d x=2 x$ or $d x=d u / 2 x$.
Now $d u / 2 x$ can be substituted for $d x$ of the above function.

$$
\begin{aligned}
\int 2 x\left(x^{2}+1\right) d x & =\int 2 x u \frac{d u}{2 x}=\int u d u \\
& =\frac{1}{2} u^{2}+c \\
& =\frac{1}{2}\left(x^{2}+1\right)^{2}+c \\
& =\frac{1}{2}\left(x^{4}+2 x^{2}+1\right)+c
\end{aligned}
$$

eg. $\quad \int 2 x\left(x^{2}+8\right)^{3} d x$
If we defined $u=x^{2}+8$ and $d u / d x=2 x$. From this
$\frac{d u}{2 x}=d x$
$\int 2 x\left(x^{2}+8\right)^{3} d x=\int 2 x u^{3} d x=\int 2 x u^{3} \frac{d u}{2 x}$

$$
\begin{aligned}
& =\int u^{3} d u=\frac{1}{4} u^{4} \\
& =\frac{1}{4}\left(x^{2}+8\right)^{4}+c
\end{aligned}
$$

The Definite Integral

The indefinite integral of a continues function $f(x)$ is:

$$
\int f(x) d x=F(x)+c
$$

If we choose two values of x in the domain, say a and b (b > a), substitute them successively into the right side of the above equation and form the difference we get a numerical value that is independent of the constant c .

$$
[F(b)+c]-[F(a)+c]=F(b)-F(a)
$$

This value is called the definite integral of $f(\mathrm{x})$ from a to b . a and b are lower and upper limits of integration, respectively.

Now, we will modify the integration sign to indicate the definite integral of $f(\mathrm{x})$ from a to b as:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =[F(x)+c]_{a}^{b}=[F(b)+c]-[F(a)+c] \\
& =F(b)-F(a)
\end{aligned}
$$

Evaluate the following definite integrals

$$
\begin{aligned}
& \text { 1. } \int_{2}^{4} 3 \mathrm{x}^{2} d x=3\left[\frac{x^{3}}{3}\right]_{2}^{4}=4^{3}-2^{3}=56 \\
& \text { 2. } \int_{1}^{2}\left(6 x^{2}+8 x+1\right) d x=27
\end{aligned}
$$

3.

$$
\int_{0}^{2}(x+7)^{3} d x=\left[\frac{(x+7)^{4}}{4}\right]_{0}^{2}
$$

$$
\begin{aligned}
& =\frac{1}{4}\left[(2+7)^{4}-(0+7)^{4}\right] \\
& =\frac{1}{4}\left(9^{4}-7^{4}\right) \\
& =\frac{1}{4}(4160)=1040
\end{aligned}
$$

4. $\left.\quad \int_{a}^{b} k e^{x} d x=k e^{x}\right]_{a}^{b}=k\left(e^{b}-e^{a}\right)$

The Definite Integral as an Area

The area of the region bounded by the curve $\mathrm{y}=f(\mathrm{x})$, and by the x axis, on the left by $x=a$, and on the right by $x=b$ is given by,

$$
\operatorname{Area}(A)=\int_{a}^{b} f(x) d x
$$

If the curve $y=f(x)$ lies below the x axis, then

$$
\operatorname{Area}(A)=-\int_{a}^{b} f(x) d x
$$

The area $(\mathrm{A})+\mathrm{B})=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x$

IF $f(x)$ and $g(x)$ are the two functions of x and $f(x)>g(x)$

$\operatorname{Area}(\mathrm{A})=\operatorname{Area}(\mathrm{J})-\operatorname{Area}(\mathrm{B})$

$$
=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x
$$

eg.1. Determine the area under the curve given by the function $y=20-4 x$ over the interval 0 to 5 .

$\operatorname{Area}(\mathrm{A})=\int_{0}^{5}(20-4 x) d x=\left[20 x-2 x^{2}\right]_{0}^{5}$

$$
\begin{aligned}
& =(100-50)-(0) \\
& =50
\end{aligned}
$$

Eg. 2 Find the area bounded by the functions $y=x^{2}$, and $y=10-3 x$ and Y axis.

$$
\begin{aligned}
\mathrm{A} & =\int_{0}^{2}(10-3 x) d x-\int_{0}^{2} x^{2} d x \\
& =\left[10 x-\frac{3}{2} x^{2}\right]_{0}^{2}-\left[\frac{x^{3}}{3}\right]_{0}^{2} \\
& =\frac{34}{3}
\end{aligned}
$$

3. Determine the area between the curve of $f(x)=10-2 X$ and the X axis for values of $\mathrm{X}=3$ to $\mathrm{X}=7$.

$$
\begin{aligned}
\text { AREA } a b c=\int_{3}^{5}(10-2 X) d X & =\left[10 X-X^{2}\right]_{3}^{5} \\
& =4
\end{aligned}
$$

$$
\begin{aligned}
\text { AREA bde }=\int_{5}^{7}(10-2 X) d X & =\left[10 X-X^{2}\right]_{5}^{7} \\
& =-4
\end{aligned}
$$

$\because . \operatorname{AREA}=\mathrm{abc}+\mathrm{bde}=8$

Economic Applications

1. If the marginal cost (MC) function of a firm is $C^{\prime}=2 e^{0.2 Q}$ and the fixed $\operatorname{cost} \mathrm{C}_{\mathrm{F}}=90$. Find the total cost function (TC).
2. If the marginal cost (MC) function of a firm is
$M C(q)=\left(6 q^{2}+4\right) \sqrt{2 q^{3}+4 q+36}$ and fixed cost of
function is 1088 . Find the total cost function (TC).
3. If the marginal saving function of a country is

$$
S^{\prime}(Y)=0.3-0.1 Y^{-1 / 2} \text {. If the aggregate saving } \mathrm{S} \text { is zero }
$$

when income (Y) is 81 . Find the saving function $S(Y)$.
4. Consumer's demand function for a given commodity has been estimated to be $\mathrm{P}=30-2 \mathrm{Q}$ where, P is the price of a unit of the commodity and Q is the per capita consumption of the commodity per person per month. Determine (a) the total expenditure and (b) the consumer surplus when the price of a unit is 5 .
5. If the supply function of a commodity is $\mathrm{P}=1000+50 \mathrm{Q}$ where, P is the price per unit and Q is the number of units sold each day. Find the producer surplus when the price of a unit of the commodity is 2000 .
6. If the willingness of a nurse to provide her service is defined by the supply function $\mathrm{W}=2.5+0.5 \mathrm{H}$
where, W is the wage rate per unit H is hours of work provided each week.

Determine the producer surplus paid to the nurse if the prevailing wage rate is 9 per hour.
9. Suppose that t years from now, one investment will be generating profit at the rate of $P_{1}^{\prime}(t)=50+t^{2}$ hundred dollars per year, while a second investment will be generating profit at the rate of $P_{2}^{\prime}(t)=200+5 t$ hundred dollars per year. $P 1(t)$ and $P 2(t)$, satisfy $P_{2}(t) \geq P_{1}(t)$ for the first N years $(0 \leq t \leq N)$. (a) For how many years does the rate of profitability of the second investment exceed that of the first?
(b) Compute the net excess profit for the time period determined in part (a). Interpret the net excess profit as an area.
10. Suppose that when it is t years old, a particular industrial machine generates revenue at the rate $R(t)=5,000-20 t^{2}$ dollars per year and that operating and servicing costs related to the machine accumulate at the rate $C(t) 2,000+10 t^{2}$ dollars per year
(a) How many years pass before the profitability of the machine begins to decline?
(b) Compute the net earnings generated by the machine over the time period determined in part (a)

$D(q)=4\left(25-q^{2}\right)$ ๑ออ.

 ఠิе๐ ш.

